
A Calculus of Macro-Events: Progress Report�

Iliano Cervesato

Advanced Engineering and Sciences Division

ITT Industries, Inc.

Alexandria, VA 22303-1410, USA

iliano@itd.nrl.navy.mil

Angelo Montanari

Dipartimento di Matematica e Informatica

Universit�a di Udine

Via delle Scienze, 206 { 33100 Udine, Italy

montana@dimi.uniud.it

Abstract

The need of constraining the temporal relationships
among sets of related events arises in several tempo-
ral reasoning tasks, including monitoring, plan vali-
dation, planning, and diagnosis. Process constructors
provide an e�ective way of packaging up related events
into individual conceptual chunks, called macro-events.
In this paper, we present a �rst attempt at de�ning
a Calculus of Macro-Events that extends Kowalski and
Sergot's Event Calculus with process constructors to ex-
press e�ects triggered by complex combinations of event
occurrences. We apply this language to model the op-
erations of a simple gas heater, and present a Prolog
implementation.

1 Introduction

Classical formalisms for reasoning about actions and
change make the simplifying assumptions that (i) only
one action can be performed at any given time (some
formalisms actually allow simultaneous actions under
the assumption that they do not inuence each other),
and (ii) actions are instantaneous. When we remove
the �rst assumption, we must take into account that
concurrent actions may interact. Interactions may lead
both to synergistic results (their combined e�ect is
more than the sum of their individual outcomes) and to
interferences (their individual e�ects may be partially
or totally canceled). For example [2], if one agent lifts
one end of a piano, while another agent lifts the other
end, then the entire piano is lifted o� the oor; instead,
if one agent pushes a door open, while the other is push-
ing it closed, the two actions cancel each other out. To
handle these situations, many formalisms support ex-

�The �rst author is supporting the Formal Methods Sec-

tion of the Naval Research Laboratory under contract N0014-

96-D2024. The second author was partially supported by the

MURST project Software Architectures and Languages to Coor-

dinate Distributed Mobile Components.

plicit axioms to model interaction among concurrent
actions, e.g. [4, 5, 13, 14, 18, 23, 26]. If we also re-
move the assumption that actions are instantaneous,
occurrences of actions may partially overlap which can
inuence the outcome of the interacting actions [20].

However, the ability of dealing with concurrent
and/or temporally extended actions is not suÆcient
for many realistic applications. Modeling real-world
domains may indeed require representing complex pat-
terns of actions, which, besides sequentiality and con-
currency, involve additional relations among actions,
such as the occurrence of just one action in a given set,
the iteration of occurrences of the same action or of a
pattern of actions. The notion of process has been in-
troduced to de�ne compound actions in terms of pat-
terns of simpler actions. As an example, the action
of dialing a ten-digit number can be de�ned as a set
of ten basic actions in strict sequence. Foundational
work on process modeling, which inspired research in
many Computer Science areas, including knowledge
representation, has been done by Hoare [15] and Mil-
ner [21]. Limited contributions to (discrete) process
modeling in the temporal representation and reason-
ing area have been proposed by Evans [12], Belegrinos
and George� [6], Lesp�erance et al. [17], and by Lin and
Dean [19].

In this paper, we present preliminary results on the
de�nition of a Macro-Event Calculus, an extension of
Kowalski and Sergot's Event Calculus, EC [16]. Our
proposal allows expressing basic forms of process inter-
action, including temporal delays between processes,
sequential, simultaneous, and alternative occurrences
of processes, and process iteration. This proposal
builds on work by Chittaro and Montanari [10] on mod-
eling discrete processes. The set of constructors of the
current version of the Macro-Event Calculus is similar
to the path expression operators of [3]. Originally de-
veloped for modeling operating system behavior, path
expressions have been successfully used in several areas
of Computer Science. In this paper, we show how their
formalization within the Event Calculus can be usefully

47



Main
Gas

Safety
disable

Lighter

Power Desired
Temperature

Figure 1. The Gas Heater: a User’s Perspective

employed to reason about complex events. Compared
to other approaches to the formalization of processes in
temporal reasoning, our proposal is characterized by a
logical bias: we aim at developing a calculus that gives
a logical meaning to constructs which are operational
in nature. We reconcile the two views by providing a
logic programming implementation of the Macro-Event
Calculus.

The paper is organized as follows: in Section 2, we
describe the Gas Heater Problem, that we will use as
our case study throughout this paper. In Section 3
we formalize versions of the Event Calculus that allow
explicit time and event durations. In Section 4, we
de�ne macro-events and extend our speci�cation of EC
to handle them. We give a Prolog implementation of
these various calculi in Section 5, and outline directions
of future work in Section 6.

2 Case Study

We will illustrate the use of EC and of the pro-
posed extensions by modeling some of the operations
of a simple gas heater [10]. We now give an infor-
mal description of this case study, and later formalize
it as we introduce concepts and de�nitions. In [22],
we have successfully applied a variant of the Macro-
Event Calculus to a larger-scale example, the Dagstuhl
Steam-Boiler problem [1].

The gas heater presents to its user an interface
(shown in Figure 1) consisting of two buttons (Safety
Disable and Lighter) which must be used during the

system start up procedure, a switch (Power) used to
enable or disable system operation, a knob (Desired
Temperature) used to select the desired temperature
for the environment where the gas heater is placed, a
tap (Gas Main) used to allow or prevent the supply
of gas to the heater and a plug to supply electricity to
the heater. The user typically starts up the system by:
connecting the plug to a socket, opening the Gas Main
tap, turning on the Power switch, pressing the Safety
Disable button together with the Lighter button and
keeping them pressed until he/she sees the pilot light
turning on, releasing then the two buttons. When the
pilot light is on, heating is automatically controlled by
the system, which burns gas when the room tempera-
ture is lower than desired and keeps only the pilot light
on otherwise (details below).

Looking inside the gas heater (Figure 2), six main
components deserve attention. The Power Switch al-
lows or prevents the supply of electrical power to the
Thermostat and to the Lighter System. The Lighter
System is devoted to producing sparks in order to light
up the pilot light during the start up procedure. The
Safety System prevents dangerous gas leaks into the
environment: this thermo-mechanical device closes the
Safety Valve when it is not heated by the pilot light
and opens it when the pilot light is on. If the Safety
Disable button is pressed, the Safety Valve allows gas
to ow through the pipe connected to the pilot light
(thus allowing, if needed, to ignite the pilot light with
the Lighter) but not through the pipe connected to
the Thermostatic Valve. The Thermostat senses room

48



system
LighterSafety

system

Power
switch

Main
Gas

Thermostat

Thermostatic
valve

Safety
valve

Figure 2. The Gas Heater: an Engineer’s Perspective

temperature and opens the Thermostatic Valve if the
temperature is one degree or less lower than the Desired
Temperature preset by the user; it closes the valve when
temperature is at least one degree higher than the De-
sired Temperature. When both the Safety Valve and
the Thermostatic Valve are open, a huge quantity of
gas is allowed to reach the main burner and be burnt,
possibly ignited by the pilot light.

3 Explicit Time and Event Duration

We will now introduce the avors of EC we will
consider in this paper. In Section 3.1, we formalize
EC with explicit time. In Section 3.2, we extend this
model to admit non-instantaneous events. Finally, in
Section 3.3, we apply these notions to our case study.

3.1 Explicit Time

While the original informal presentation of the
Event Calculus [16] anchors the occurrence of instanta-
neous events to explicit time points, recent work on the
formalization of EC [7, 8, 9] abstracted the time line
and only considered events that are ordered relative to
one another. We will extend this de�nition so to ad-
mit explicit time. We will operate on the formulation
in [8], that embeds preconditions.

The Event Calculus with Explicit Time and Instan-
taneous Events (ECT ) aims at modeling situations
that consist of a set of events, whose occurrences over

time have the e�ect of initiating or terminating the va-
lidity of properties when given preconditions are met.
The time-independent aspects of a situation are formal-
ized by means of an ECT-structure. It alters the notion
of PEC -structure given in [8] only by the addition of a
temporal domain.

De�nition 3.1 (ECT-structure)

A structure for the Event Calculus with Explicit
Time (ECT-structure for short) is a quintuple H =
(E; P; [�j�i; h�j�]; T ) such that:

� E = fe1; : : : ; eng and P = fp1; : : : ; pmg are �nite
sets of event types and properties, respectively.
Elements of 2P are called contexts and the prop-
erties in them are referred to as preconditions.

� [�j�i : P � 2P ! 2E and h�j�] : P � 2P ! 2E are
respectively the initiating and terminating map of
H. For every property p 2 P , [pjCi and hpjC] rep-
resent the set of events that initiate and terminate
p, respectively, in case all preconditions in C hold
at their occurrence time.

� The temporal domain T is some ordered set
(T;�). In our implementation, we used the natu-
ral numbers N with their usual ordering.

The instance-speci�c part of a speci�cation is captured
through the following notion of time-structure:

49



De�nition 3.2 (Time-structure)

Given an ECT-structure H = (E; P; [�j�i; h�j�]; T ),
a time-structure for H is a set T � E � T of event
instances, where a pair (e; t) 2 T expresses the fact
that an event of type e has occurred at time t.

Given the formalization of a situation in terms of
an ECT -structure and a time-structure, ECT provides
means to check whether a given property p is valid at
a given point t in time [predicate holdsAt(p; t) below].
This problem is easily reduced to the determination of
the maximal validity intervals, abbreviated MVI, over
which a given property holds [mvi(p; t1; t2)]: a property
p holds maximally over an interval [t1; t2] if i) t1 � t2,
ii) an event e initiating p subject to preconditions C1

has occurred at t1 and all properties in C1 hold at
t1 [initiate(p; t1)], iii) dually, an event e terminating p

subject to preconditions C2 has occurred at t2 and all
property in C2 hold at t2 [terminate(p; t2], and iv) p is
not initiated or terminated at any time point between
t1 and t2 [:broken(p; t1; t2)].

De�nition 3.3 (ECT-model)

Let H = (E; P; [�j�i; h�j�]; T ) be a ECT-structure
and T be a time-structure over H. We de�ne the fol-
lowing recursive predicates:

holdsAt(p; t) i� 9t1; t2 2 T: t1 � t � t2 ^
mvi(p; t1; t2)

mvi(p; t1; t2) i� t1 � t2 ^ initiate(p; t1) ^
terminate(p; t2) ^ :broken(p; t1; t2)

initiate(p; t) i� 9e 2 E: 9C 2 2P : (e; t) 2 T ^
p 2 [ejCi ^ 8q 2 C: holdsAt(q; t)

terminate(p; t) i� 9e 2 E: 9C 2 2P : (e; t) 2 T ^
p 2 hejC] ^ 8q 2 C: holdsAt(q; t)

broken(p; t1; t2) i� 9t 2 T: t1 � t ^ t � t2 ^
(initiate(p; t) _ terminate(p; t)).

The meta-predicates holdsAt, mvi, initiate, terminate

and broken are mutually recursive in the above de�ni-
tion. In particular, an attempt at checking properties
or computing MVIs by simply unfolding their de�ni-
tion is non-terminating in pathological situations [8].
However, most ECT problems encountered in practice
satisfy syntactic conditions ensuring the termination of
this procedure. See [8] for a detailed discussion of these
restrictions.

The above de�nition can be directly transcribed in
the programming language Prolog [25]. The resulting
code is given in Section 5.1.

3.2 Event Duration

Although thinking of events as instantaneous is a
suÆcient abstraction for some situations, in many cases
the occurrence of an event happens over a period of
time [24]. Capturing this possibility enables �ner mod-
els, as we can now reason about changes that take place
while an event is in the process of occurring. In par-
ticular, we must revise our notion of precondition as it
can now have at least two meanings: a property that
should hold in order for an event to start happening, or
a property that ought to be uninterruptedly valid dur-
ing the entire duration of the occurrence of an event.
In our formalization below, we will allow both options,
keeping the name precondition for the former, and call-
ing the latter constraint [10].

De�nition 3.4 (ECTD-structure)

A structure for the Event Calculus with Event Du-
ration (ECTD-structure for short) is a sextuple H =
(E; P; [�j�j�i; h�j�j�]; T; Æ) such that:

� E and P are the sets of event types and properties,
respectively.

� [�j�j�i: P�2P�2P ! 2
E and h�j�j�]: P�2P�2P !

2
E are respectively the initiating and terminating

map of H. For every property p 2 P , [pjCjKi and
hpjCjK] represent the set of events that initiate
and terminate p, respectively, in case all precon-
ditions in C hold at the time they start occurring,
and all constraints in K hold for the entire dura-
tion of their occurrence.

� T = (T;�;+; 0) is the temporal domain, where
the ordered set (T;�) considered above is aug-
mented with a monoid component (T;+; 0).

� Æ : E ! T is a duration function, that gives the
duration of every event type.

Observe that ECT -structures are degenerate ECTD-
structures where no constraints are present, and Æ(e) =
0 for every event e 2 E. We do not need to modify the
de�nition of time-structure.

In spite of the drastic changes in De�nition 3.4 with
respect to the notion of ECT -structure, the modi�ca-
tions to the speci�cation of how to check whether a
property holds at a given time point are localized to
the predicates initiate and terminate. Let us focus on
the former: in order for initiate(p; t) to hold, there must
be an event e with preconditions C and constraints K
that initiates p. If e starts occurring at time t0, it must
be the case that t is the endpoint of the occurrence

50



interval of e (i.e. t = t0 + Æ(e)). Moreover, every pre-
condition in C must hold at its startpoint t0, and ev-
ery constraint in K must be valid without interruption
throughout the interval [t0; t]. Notice in particular that
an event has e�ectively initated a property at the end
of its occurrence interval. Similar considerations ap-
ply to the case of terminate. This is captured in the
following de�nition, where the predicates holdsDuring

and happens are accessory.

De�nition 3.5 (ECTD-model)

Let H = (E; P; [�j�j�i; h�j�j�]; T; Æ) be a ECTD-
structure and T be a time-structure over H. We modify
De�nition 3.3 by overriding the speci�cation of initiate
and terminate given there with the clauses below, and
adding the predicates happens and holdsDuring.

initiate(p; t) i�
9e 2 E: 9t0; d 2 T: 9C;K 2 2P :

happens(e; t0; d) ^ t = t0 + d ^
p 2 [ejCjKi ^ 8q 2 C: holdsAt(q; t0) ^
8q 2 K: holdsDuring(q; t0; t)

terminate(p; t) i�
9e 2 E: 9t0; d 2 T: 9C;K 2 2P :

happens(e; t0; d) ^ t = t0 + d ^
p 2 hejCjK] ^ 8q 2 C: holdsAt(q; t0) ^
8q 2 K: holdsDuring(q; t0; t)

happens(e; t; d) i� (e; t) 2 H ^ d = Æ(e)

holdsDuring(p; t1; t2) i� 9t0; t3 2 T: mvi(p; t0; t3) ^
t0 � t1 ^ t2 � t3:

It is easy to verify that, whenever H corresponds to an
ECT -structure, the de�nition reduces to De�nition 3.1.

It is interesting to observe that, in the absence of
constraints, the Event Calculus with Event Duration
can be compiled into the formalism presented in Sec-
tion 3.1. Every lasting event e is translated into a
pair of instantaneous events start e and end e, and a
property occ e. Instances (e; t) are mapped to the in-
stantaneous instances (start e; t) and (end e; t+ Æ(e)).
Finally, if p 2 [ejCj�i, we get occ e 2 [start ejCi, more-
over occ e 2 hend ej�], �nally p 2 [end ej�i. The termi-
nation map is processed analogously. The treatment
of constraints is problematic because of the require-
ment that they ought not to be interrupted during the
event's occurrence interval.

Prolog code implementing De�nition 3.5 is given in
Section 5.2.

3.3 Example — Part I

The �rst phase of the representation of the gas
heater in EC consists in the identi�cation of the rele-
vant types of events. We consider eleven types: eight
of them represent possible actions of the user of the
gas heater, i.e. open or close the Main Gas tap (gasOn,
gasO�), turn on or o� the Power switch (powerOn,
powerO�), press or release the Safety Disable button
(prDisable, relDisable), and press or release the Lighter
button (prLighter, relLighter). In this simple model, we
will not represent the action of setting the Thermostat
to the desired temperature. Two other types of event
represent the possible temperature changes in the en-
vironment as reported by a Thermometer (coolDown,
warmUp). In order to represent the properties that are
initially valid in the system [11], we add the �ctitious
event start which represent the beginning of time. A
possible time structure T built using the above types
of events is the following:

(start; 0):
(coolDown; 0):
(gasOn; 1):
(powerOn; 2):
(prDisable; 3):
(prLighter; 3):
(relLighter; 5):

(relDisable; 6):
(warmUp; 8):
(coolDown; 10):
(warmUp; 11):
(powerO�; 18):
(gasO�; 19):
(coolDown; 25):

In this scenario, the user notices a drop in temperature
(time 0) and takes all the actions needed in order to
ignite the pilot light: she opens the Gas Main (time 1),
switches the power on (time 2), and presses the Lighter
and Safety Disable buttons simultaneously (time 3).
She releases these buttons at time 5 and 6, respectively.
Between time 8 and 11 the thermometer reports some
temperature changes in the environment. At time 18
the user interrupts the supply of gas, and shortly after
she turns the power o�. Eventually, the rooms becomes
cold again (time 25).

The second step in the representation of the gas
heater is the identi�cation of the interesting prop-
erties that are initiated and terminated by events.
We model this system by means of nine proper-
ties: whether gas is owing into the heater (gas),
whether electrical power is supplied (power), whether
the room is cold (cold), whether the thermostatic
and the safety valves are open (thermoVOpen and
safetyVOpen, respectively), whether the lighter system
produces sparkles (sparkling), whether the pilot light is
on (pilotOn), and whether gas is burning in the main
combustion chamber (burning). Finally, it will be con-
venient to know when the pilot light is o� (pilotO�).

These properties fall in three classes: properties ini-

51



tiated or terminated by the simple occurrence of an
event; properties initiated or terminated by the occur-
rence of an event in a speci�c context; properties initi-
ated or terminated by a combination of events.

Properties gas, power, cold, and thermoVOpen fall in
the �rst class: they are unconditionally initiated and
terminated by the events gasOn and gasO�, powerOn
and powerO�, coolDown and warmUp, and coolDown

and warmUp, respectively. This is captured in EC as
follows:

[gasj�j�i = fgasOng;
[powerj�j�i = fpowerOng;
[coldj�j�i = fcoolDowng;
[thermoVOpenj�j�i = fcoolDowng;

hgasj�j�] = fgasO�g
hpowerj�j�] = fpowerO�g
hcoldj�j�] = fwarmUpg
hthermoVOpenj�j�] = fwarmUpg

The second class consists of the properties sparking
and safetyVOpen. While the former simply requires
that power be supplied when the lighter button is
pressed, the latter has a more complex behavior. Con-
sider �rst how to terminate the property safetyVOpen:
if the pilot light is o�, releasing the safety button is
suÆcient to close the valve; however if this is not the
case, the only way to shut the safety valve is by extin-
guishing the pilot light, which is achieved, as we will
see, by interrupting the supply of gas. We have the
following formalization:

[sparkingj�jpoweri = fprLighterg
[safetyVOpenj�j�i = fprDisableg

hsparkingj�j�] = frelLigher; powerO�g
hsafetyVOpenj�jpilotOn] = fgasO�g
hsafetyVOpenj�jpilotO�] = frelDisableg

The remaining properties pilotOn and pilotO�,
which records whether the pilot light is on or o�, de-
pends on constraints such as the availability of power
and gas. However, they are initiated and terminated
respectively by the simultaneous occurrence of two
events (prDisabled and prLighter). Similar remarks ap-
ply to the property burning. The extensions to EC we
devised so far are insuÆcient to specify these situations.

4 Event Calculus with Macro-Events

As we just saw, even when events with durations are
available, EC does not lend itself to easily expressing
situations where properties are initiated or terminated
not by single events, but by the occurrence of multiple

events. We will address this shortcoming of ECTD by
allowing the validity status of properties to be changed
on the basis of the occurrence of structured conglom-
erations of events that we will call macro-events. In
Section 4.1, we de�ne this notion and extend ECTD-
structures to accommodate it. It takes into account
the cumulative e�ects of a set of related events, but for
simplicity, excludes interference issues. In Section 4.2,
we simultaneously address the problems of determin-
ing whether a macro-event has occurred, and extend
the speci�cation of validation of a property (De�ni-
tion 3.5) to these entities. In Section 4.3, we complete
the treatment of our case-study.

4.1 Definition

In our current model, macro-events are obtained by
considering sequential, alternative, parallel, or iterated
occurrences of elementary events, or any combination
of these constructions.

De�nition 4.1 (Macro-Events)

Given a set of events E and a temporal domain
T = (T;�;+; 0), macro-events, denoted with m possi-
bly subscripted, are expressions de�ned by the following
grammar:

m ::= e (Basic event)
j m1 ;

D

d
m2 (Sequence with delay d to D)

j m1 +m2 (Alternative)
j m1 jjm2 (Parallelism)
j m� (Iteration)

where d;D 2 T and d � D. Let MT be the set of the
macro-events over T .

This de�nition formalizes the core of the notion of pro-
cess studied at length in [10, 22], which in turn extends
the limited notion of macro-events (essentially delayed
sequencing) presented in [12].

The constructors we included in this language are
based on the path expression operators of [3] and on
the process calculi operators found in [15, 21]. Observe
that a number of useful constructs are easily express-
ible with the language in De�nition 4.1. In particu-
lar sequencing with arbitrary delay (;), immediate se-
quencing (;;), non-empty iteration (�+) and �xed-length
iteration (�n) are de�ned as follows in [22]:

m1;m2 = m1 ;
1

0 m2

m+ = m;m�

m1;;m2 = m1 ;
0
0 m2

mn = m; : : : ;m (n times)

52



me(e; [t1; t2]; s; l) i� (e; s) 2 T ^ l = Æ(e) ^ [s; s+ l] � [t1; t2]
me(m1 ;

D

d
m2; [t1; t2]; s; l) i� 9t01; t

0

2; l1; l2 2 T: me(m1; [t1; t
0

1]; s; l1) ^ me(m2; [t
0

2; t2]; s2; l2) ^
s+ l1 � t01 � t02 � s2 ^ s+ l1 + d � s2 � s+ l1 +D ^
l = s2 + l2 � s

me(m1 +m2; [t1; t2]; s; l) i� me(m1; [t1; t2]; s; l) _ me(m2; [t1; t2]; s; l)
me(m1 jjm2; [t1; t2]; s; l) i� 9s1; l1; s2; l2 2 T: me(m1; [t1; t2]; s1; l1) ^ me(m2; [t1; t2]; s2; l2) ^

s = min(s1; s2) ^ l = max(s1 + l1; s2 + l2)� s

me(m�; [t1; t2]; s; l) i� 9l1; s2; l2 2 T: (s = t1 ^ l = 0) _
(me(m; [t1; t]; s; l1) ^ me(m�; [t; t2]; s2; l2) ^
s+ l1 � t � s2 ^ l = s2 + l2 � s)

Figure 3. Definition of me

Before giving the exact semantics of macro-events,
we update our formalization of ECTD of Section 3.2
to accomodate these entities. The changes to the de�-
nition of ECTD-structure turn out to be very modest.

De�nition 4.2 (MECTD-structure)

A structure for the Macro-Event Calculus
(MECTD-structure for short) is a septuple
H = (E; P; M; [�j�j�i; h�j�j�]; T; Æ) which dif-
fers from the de�nition of ECTD-structure only by
the following points:

� M �MT is a set of macro-events over T .

� The codomain of [�j�j�i and h�j�j�] are rede�ned to be
2M : indeed [�j�j�i : P � 2P � 2P ! 2M and h�j�j�] :
P � 2P � 2P ! 2M . This implies that properties
can be started and ended by generic macro-events,
not just plain events.

� We assume that the temporal domain (T;�) has
a maximum element 1, and that (T;+; 0) is a
group, with � the inverse operation of +.

Observe that we did not propagate the change to the
duration function: only basic events are explicitly given
a duration by means of Æ. The duration of occurrences
of macro-events will instead be computed on the basis
of their structure and of the participating basic events.

We do not modify our notion of time-structure T :
only elementary events are recorded. Occurrences of
macro-events will instead be inferred.

4.2 Monitoring and Evaluation

The occurrence of a macro-event is not explicitely
recorded, but must be determined on the basis of
its de�nition and of the time-structure at hand. In
order to do so, we de�ne the auxiliary predicate

me(m; [t1; t2]; s; l), which veri�es whether a macro-
event m has occurred over the interval [t1; t2], and, if
this is the case, computes its starting point s and dura-
tion l. These two arguments are necessary to correctly
process the bounds of a delayed sequence of events.
Given a MECTD-structure H = (E; P; M; [�j�j�i;
h�j�j�]; T; Æ) and a time structure T on H, this predi-
cate is recursively de�ned in Figure 3, where we have
promoted � to denote the sub-interval relation over T .

Observe that me de�nes the semantics of the macro-
event constructors presented in De�nition 4.1. In the
base case of the recursion, i.e. if m is an event e, we
verify if an ocurrence of e has been recorded in the
time-structure T . If so, we check that it takes place
over a subinterval of [t1; t2]. In the case of a sequence,
we must make sure that the endpoint of the �rst com-
ponent and the starting time of the second are within
the acceptable delay. Clearly, they must take place
over sequentially disjoint intervals. In order to verify
that an alternative macro-event has occurred, we look
for the occurrence of either component. Parallel macro-
events must have both occurred over the same interval.
Observe that we do not require that the two branches
mention distinct events; indeed m jjm is equivalent to
m. Finally, iterated macro-events are essentially re-
duced to (possibly empty) sequences. Notice that we
do not force any form of maximality: the empty iter-
ation is always satis�ed; its starting point is made to
coincide with the beginning of the test interval, and it
always has null duration.

We check whether a given macro-event has occurred
over some interval by using the above de�nition, while
abstracting from the starting time and duration.

De�nition 4.3 (Monitoring Macro-Events)

Let H be a MECTD-structure and T be a time-
structure over H. We say that a macro-event
m has occurred over an interval [t1; t2], written

53



check(m; [t1; t2]), i�

9s; l 2 T: me(m; [t1; t2]; s; l)

is valid.

The starting point and duration of macro-events are
useful in order to compute MVIs, and ultimately to
check whether a given property holds at a certain point
in time. Therefore, me o�ers a way to update the predi-
cate happens from De�nition 3.5 to operate over generic
macro-events.

De�nition 4.4 (MECTD-model)

Let H be a MECTD-structure and T be a time-
structure over H. We modify De�nition 3.5 by over-
riding the de�nition of happens given there with the
following clause:

happens(m; t; d) i� me(m; [0;1]; t; d)

This de�nition provides an elegant speci�cation to
the core of the system presented in [10]. We limited
ourselves to treating the situation where macro-events
can initiate or terminate properties. This is suÆcient
for many applications, and involves much simpler def-
initions than the general case. We did not include
here the possibility of a macro-event that cancels e�ects
caused by some of its components (be it an elementary
event, or a macro-event). A complete speci�cation can
be found in [22], and will be included in an extended
version of this paper.

An implementation of these speci�cations can be
found in Section 5.3.

4.3 Example — Part II

Macro-events are a convenient tool to complete the
speci�cation of the example in Section 2. Continuing
from Section 3.3, we can now express the validity of
properties pilotOn, pilotO�, and burning:

[pilotOnj�jpower; gasi = fprLighter jj prDisableg
[pilotO�j�j�i = fstartg
[pilotO�j�jpilotOni = fgasO�g
[burningj�jpilotOni = fcoolDowng
[burningj�jcold; power; gasi = fprLighter jj prDisableg

hpilotOnj�j�] = fgasO�g
hpilotO�j�jpower; gas] = fprLighter jj prDisableg
hburningj�jpilotOn] = fwarmUpg
hburningj�j�] = fgasO�g

Property burning has two initiation clauses. The �rst
applies when the pilot light is lit: if the temperature

drops below the thermostatic threshold, gas will start
burning. The second handles the case where the room
is cold at the moment in which the pilot light is ignited.
This property has an equally interesting termination
behavior: it can always be ended by cutting the gas
supply, but if the pilot light is on it is suÆcient that
the room temperature warms up above the threshold
set through the thermostat.

This concludes the speci�cation of the properties of
interest.

It is worth observing that the overall speci�ca-
tion of the gas heater could be considerably shortened
by admitting the notions of auto-initiation and auto-
termination [10] to our calculus. An auto-initiated
property (here burning is a good candidate) is explic-
itly initiated not by the occurrence of events, but as
soon as the validity periods of one or more other prop-
erties start overlapping (here pilotOn and cold). Auto-
termination is de�ned in a dual way. We plan to in-
clude these constructs in a forthcoming version of the
macro-event calculus.

5 Implementation

We will now give a Prolog [25] implementation of
the calculi we have presented so far and an encoding of
our case study. We assume the reader is familiar with
this logic programming language.

5.1 EC with Explicit Time

We represent the initiation and termination maps,
[�j�i and h�j�] of an ECTD-structure by means of the
Prolog predicates init and term, respectively. We use
Prolog 's lists to represent the preconditions of the ef-
fect of an event. We adopt the integers as the temporal
domain T . The precedence relation � is then mapped
to <. Each pair (e; t) in a time-structure is represented
as the fact happens(peq,ptq), where peq and ptq en-
code e and t respectively. For aesthetic reasons, we
represent an interval [t1; t2] with the two-element list
[pt1q,pt2q].

The contents of De�nition 3.3 are then transcribed
as follows in Prolog, where we have kept the predicate
name unchanged.

holdsAt(P, T) :-

mvi(P, [T1,T2]),

T1 =< T, T < T2.

mvi(P, [T1,T2]) :-

initiate(P, T1), terminate(P, T2),

T1 < T2,

\+ broken(P, [T1,T2]).

54



mHoldsAt([],_).

mHoldsAt([P|C], T) :-

holdsAt(P, T),

mHoldsAt(C, T).

initiate(P, T) :-

init(E, P, C),

happens(E, T),

mHoldsAt(C, T).

terminate(P,T) :-

term(E, P, C),

happens(E, T),

mHoldsAt(C, T).

broken(P, [T1,T2]) :-

(initiate(P, T) ; terminate(P, T)),

T1 < T, T < T2.

Whenever the syntactic conditions [8] mentioned in
Section 3.1 are met, this program allows not only ver-
ifying the validity of a property at a given time point
t, but also computing all the properties that hold at
t. Using the technique in [9], it is possible to prove
the soundness and completeness of this program with
respect to De�nition 3.3.

5.2 EC with Explicit Time and Event Duration

We add one argument to init and term to the pre-
vious representation to encode the constraints that dis-
tinguish [�j�j�i and h�j�j�] in an ECTD-structure. More-
over, we rely on Prolog 's arithmetic to emulate the op-
eration now available in the temporal domain. Finally,
we rely on the predicate lasts to model the duration
function Æ.

The behavior of ECTD is captured by replacing the
clauses for initiate and terminate with the follow-
ing de�nitions, and adding the accessory predicates
happens, mHoldsDuring, and holdsDuring.

initiate(P,TD) :-

init(E, P, C, K),

happens(E, T, D),

TD is T + D,

mHoldsAt(C, T),

mHoldsDuring(K, [T,TD]).

terminate(P, TD) :-

term(E, P, C, K),

happens(E, T, D),

TD is T + D,

mHoldsAt(C, T),

mHoldsDuring(K, [T,TD]).

happens(E, P, D) :-

happens(E, P), lasts(E, D).

mHoldsDuring([], _).

mHoldsDuring([P|C], I) :-

holdsDuring(P, I),

mHoldsDuring(C, I).

holdsDuring(P, [T1,T2]) :-

mvi(P, [T0,T3]),

T0 =< T1, T2 =< T3.

Again, this implementation can be proved sound and
complete with respect to De�nition 3.4.

5.3 Macro-Event Calculus

We encode the process constructions m1 ;
D

d
m2,

m1 + m2, m1 jj m2 and m� by means
of the Prolog terms seq(pm1q,pm2q,pdq,pDq),
alt(pm1q,pm2q), par(pm1q,pm2q), and it(pmq),
respectively. Lacking a better abstraction, we used
100000 for 1.

We implement the predicate me and De�nitions 4.3-
4.4 by replacing the clause for happens/3 above with
the following code. The convoluted de�nition for
subinterval is due to the fact that it is used both
for checking that an interval is contained in another
interval, but also to set either endpoints of the former.

me(E, I, S, L) :-

happens(E, S),

lasts(E, L),

T is S + L,

subinterval([S,T], I).

me(seq(M1,M2,Min,Max), [T1,T2], S, L) :-

me(M1, [T1,T11], S, L1),

me(M2, [T22,T2], S2, L2),

S + L1 =< T11, T11 =< T22, T22 =< S2,

Min =< (S2 - S - L1), (S2 - S - L1) =< Max,

L is S2 + L2 - S.

me(alt(M1,M2), I, S, L) :-

(me(M1, I, S, L) ;

me(M2, I, S, L)).

me(par(M1,M2), I, S, L) :-

me(M1, I, S1, L1),

me(M2, I, S2, L2),

S is min(S1,S2),

L is max(S1+L1,S2+L2) - S.

me(it(M), [T1,T2], S, L) :-

me(M, [T1,T], S, L1),

me(it(M), [T,T2], S2, L2),

S+L1 =< T, T =< S2,

L is S2 + L2 - S.

55



me(it(_), [T,T], T, 0) :- !.

me(it(_), [T,_], T, 0).

check(M, I) :-

me(M, I, _, _).

happens(M, T, D) :-

me(M, [0,100000], T, D).

subinterval([B1,E1], [B2,E2]) :-

((var(B2), B1 = B2, !) ; B2 =< B1),

((var(E2), E1 = E2, !) ; E1 =< E2).

Showing the soundness and completeness of this im-
plementation with respect to the speci�cations given in
Section 4.2 is complicated by the non-logical implemen-
tation of subinterval. However, once this predicate
has been processed in isolation, standard techniques
from [9] can be successfully applied.

5.4 Example — Part III

We will now complete the treatment of the gas-
heater example by displaying the clauses that encode
the associated MECTD-structure and time structure.
The latter is immediately rendered by the following
facts:

happens(start, 0). happens(relDisable, 6).

happens(coolDown, 0). happens(warmUp, 8).

happens(gasOn, 1). happens(coolDown, 10).

happens(powerOn, 2). happens(warmUp, 11).

happens(prDisable, 3). happens(powerOff, 18).

happens(prLighter, 3). happens(gasOff, 19).

happens(relLighter, 5). happens(coolDown, 25).

where we have kept the name of the events (and below
properties) as in the body of this paper.

In our example, all events are instantaneous. There-
fore, the clause

lasts(E, 0).

summarizes all the relevant information about event
duration.

The initiation and termination maps relative to the
gas heater problem are given by the following code,
where we have grouped these facts by the property be-
ing initiated or terminated:

init(gasOn, gas, [], []).

term(gasOff, gas, [], []).

init(powerOn, power, [], []).

term(powerOff, power, [], []).

init(coolDown, cold, [], []).

term(warmUp, cold, [], []).

init(coolDown, thermoVOpen, [], []).

term(warmUp, thermoVOpen, [], []).

init(prLighter, sparking, [], [power]).

term(relLighter, sparking, [], []).

term(powerOff, sparking, [], []).

init(prDisable, safetyVOpen, [], []).

term(gasOff, safetyVOpen, [], [pilotOn]).

term(relDisable, safetyVOpen, [], [pilotOff]).

init(coolDown, burning, [], [pilotOn]).

init(par(prLighter,prDisable),

burning, [], [cold,power,gas]).

term(warmUp, burning, [], [pilotOn]).

term(gasOff, burning, [], []).

init(par(prLighter,prDisable),

pilotOn, [], [power,gas]).

term(gasOff, pilotOn, [], []).

init(start, pilotOff, [], []).

init(gasOff, pilotOff, [], [pilotOn]).

term(par(prLighter,prDisable),

pilotOff, [], [power,gas]).

This completes the formalization of the gas heater.
We can now use it to extract information that is im-
plicit in the example. The following query retrieves the
maximum validity intervals of all the properties that
appear in this case study.

?- mvi(M, I).

M = gas I = [1, 19] ;

M = power I = [2, 18] ;

M = cold I = [0, 8] ;

M = cold I = [10, 11] ;

M = thermoVOpen I = [0, 8] ;

M = thermoVOpen I = [10, 11] ;

M = sparking I = [3, 5] ;

M = safetyVOpen I = [3, 19] ;

M = burning I = [10, 11] ;

M = burning I = [3, 8] ;

M = pilotOn I = [3, 19] ;

56



M = pilotOff I = [0, 3] ;

No

We can also inquire whether a given macro-event has
occurred, when it started, and how long it lasted. For
example, if we want to know if it ever happened that
the room �rst got cold and then warm within 20 time
units, the following query will provide three answers:

?- happens(seq(coolDown,warmUp,0,20), T,D ).

T = 0 D = 8 ;

T = 0 D = 11 ;

T = 10 D = 1 ;

No

Observe that the �rst interval embeds the second. This
is acceptable since, di�erently from the evaluation of
MVI -goals, queries about macro-events do not involve
maximality checks.

Finally, we show a use of the predicate check, which
veri�es whether a given macro-event has occurred in a
given interval.

?- check(seq(coolDown,warmUp,1,5), [3,19]).

Yes

6 Conclusions and Future Work

In this paper, we presented a preliminary attempt
at de�ning a Calculus of Macro-Events that extends
Kowalski and Sergot's Event Calculus with primitives
(process constructors) for modeling discrete processes.
In particular, we showed how to infer the occurrence of
macro-events from the occurrence of their atomic com-
ponents (monitoring) as well as how to derive the maxi-
mal validity intervals of properties initiated and/or ter-
minated by a given set of macro-events (evaluation).
Furthermore, the expressive power of the Macro-Event
Calculus has been demonstrated through the encoding
of a simple real-world example (a more complex exam-
ple, namely the formalization of the Dagstuhl steam-
boiler control speci�cation problem [1], has been im-
plemented using a superset of our proposal in [22]).

We are investigating ways to extend this work to
naturally capture �ner process constructors, in partic-
ular de�nitions, non-occurrence, and exclusive alter-
natives. This would allow, for example, a complete
speci�cation of the gas heater problem. We are also
interested in formalizing synergetic e�ects and interfer-
ence [22]. Finally, we are currently working at properly

establishing the expressiveness and complexity of vari-
ants of the Macro-Event Calculus and at systematically
comparing them with other formalisms for discrete pro-
cess modeling proposed in the literature.

References

[1] J. Abrial. Steam-boiler control speci�cation problem.
In Proc. of the Dagstuhl Seminar on Methods for Se-

mantics and Speci�cations, Dagstuhl, Germany, 1995.

[2] J. F. Allen and G. Ferguson. Actions and events in
interval temporal logic. Journal of Logic and Compu-

tation, 4(5):531{580, 1994.

[3] S. Andler. Predicate path expressions. In Proceedings

of the 6th ACM Symposium on Principles of Program-

ming Languages, 1979.

[4] C. Baral and M. Gelfond. Representing concurrent ac-
tions in extended logic programming. In Proc. of 13th

International Joint Conference on Arti�cial Intelli-

gence | IJCAI, pages 866{871, Chamb�ery, France,
1993. Morgan Kaufmann.

[5] C. Baral and M. Gelfond. Reasoning about e�ects
of concurrent actions. Journal of Logic Programming,
31(1{3):85{117, 1997.

[6] P. Belegrinos and M. George�. A model of events and
processes. In Proc. IJCAI'91, Sydney, Australia, 1991.

[7] I. Cervesato, L. Chittaro, and A. Montanari. A modal
calculus of partially ordered events in a logic pro-
gramming framework. In L. Sterling, editor, Proceed-
ings of the Twelfth International Conference on Logic

Programming | ICLP'95, pages 299{313, Kanagawa,
Japan, 13{16 June 1995. MIT Press.

[8] I. Cervesato, M. Franceschet, and A. Montanari. A
guided through some extensions of the event calculus.
Computational Intelligence, 16(2):307{347, May 2000.

[9] I. Cervesato and A. Montanari. A general modal
framework for the event calculus and its skeptical and
credulous variants. Journal of Logic Programming,
38(2):111{164, Feb. 1999.

[10] L. Chittaro and A. Montanari. Reasoning about dis-
crete processes in a logic programming framework. In
D. Sacc�a, editor, Proceedings of the Eight Conference

on Logic Programming | GULP'93, pages 407{421,
Gizzieria Lido, Italy, 1993. Mediterranean Press.

[11] L. Chittaro and A. Montanari. EÆcient temporal rea-
soning in the cached event calculus. Computational

Intelligence, 12(3):359{382, 1996.

[12] C. Evans. The macro-event calculus: Represent-
ing temporal granularity. In Proceedings of the Pa-

ci�c Rim International Conference on Arti�cial In-

telligence | PRICAI'90, Nagoya, Japan, 1990. IOS
Press.

[13] M. Gelfond, V. Lifschitz, and A. Rabinov. What are
the limitations of the situation calculus? In R. Boyer,
editor, Automated Reasoning: Essays in Honor of

Woody Bledsoe. Kluwer, 1991.

57



[14] J. Gustafsson and L. Karlsson. Reasoning about ac-
tions in a multi-agent environment. Link�oping Elec-

tronic Articles in Computer and Information Science,
1997. http://www.ep.liu.se/ea/cis/1997/014.

[15] C. Hoare. Communicating Sequencial Processes.
Prentice-Hall, 1985.

[16] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4:67{95, 1986.

[17] Y. Lesp�erance, H. J. Levesque, F. Lin, D. Marcu,
R. Reiter, and R. B. Scherl. A logical approach to
high-level robot programming | a progress report. In
Control of the Physical World by Intelligent Systems,

WorkNotes of the 1994 AAAI Fall Symposium, 1994.
[18] F. Lin and Y. Shoham. Concurrent actions in the

situation calculus. In Proc. of the 10th National Con-

ference of the American Association for Arti�cial In-

telligence | AAAI, pages 590{695. AAAI Press/MIT
Press, 1992.

[19] S. Lin and T. Dean. Localized temporal reasoning
using subgoals and abstract events. Computational

Intelligence, 12(3):423{449, 1996.
[20] R. Miller and M. Shanahan. Narratives in the situation

calculus. Journal of Logic and Computation, 4(5):513{
530, 1994.

[21] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag, 1980.

[22] M. Mizzaro. La modellazione di sistemi complessi nel
calcolo degli eventi: Analisi di un caso di studio (in
italian). Tesi di Laurea in Scienze dell'Informazione,
Universit�a di Udine, 1997. Under the supervision of
A. Montanari.

[23] J. Pinto. Concurrent actions and interacting e�ects.
In Proc. of the 6th International Conference on Prin-

ciples of Knowledge Representation and Reasoning |

KR'98, pages 292{303. Morgan Kau�man, 1998.
[24] M. Shanahan. Solving the Frame Problem. The MIT

Press, 1997.
[25] L. Sterling and E. Shapiro. The Art of Prolog: Ad-

vanced Programming Techniques. MIT Press, 1994.
[26] C. Yi. Reasoning about concurrent actions with fea-

tures and uents. In Proceedings of the Third Inter-

national Workshop on Temporal Representation and

Reasoning | TIME'96, pages 6{13, Key West, FL,
1996.

58


